Reconstruction in the Calderón Problem with Partial Data

نویسندگان

  • Adrian Nachman
  • Brian Street
چکیده

We consider the problem of recovering the coefficient σ (x) of the elliptic equation ▽ · (σ ▽ u) = 0 in a body from measurements of the Cauchy data on possibly very small subsets of its surface. We give a constructive proof of a uniqueness result by Kenig, Sjöstrand, and Uhlmann. We construct a uniquely specified family of solutions such that their traces on the boundary can be calculated by solving an integral equation which involves only the given partial Cauchy data. The construction entails a new family of Green’s functions for the Laplacian, and corresponding single layer potentials, which may be of independent interest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent Progress in the Calderón Problem with Partial Data

We survey recent results on Calderón’s inverse problem with partial data, focusing on three and higher dimensions.

متن کامل

The Calderón Problem with Partial Data on Manifolds and Applications

We consider Calderón’s inverse problem with partial data in dimensions n ≥ 3. If the inaccessible part of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the flatness condition include parts of cylindrical sets, conical sets, and surfaces of re...

متن کامل

The Calderón problem with partial data

In this paper we improve an earlier result by Bukhgeim and Uhlmann [1], by showing that in dimension n ≥ 3, the knowledge of the Cauchy data for the Schrödinger equation measured on possibly very small subsets of the boundary determines uniquely the potential. We follow the general strategy of [1] but use a richer set of solutions to the Dirichlet problem. This implies a similar result for the ...

متن کامل

On the Linearized Local Calderón Problem

In this article, we investigate a density problem coming from the linearization of Calderón’s problem with partial data. More precisely, we prove that the set of products of harmonic functions on a bounded smooth domain Ω vanishing on any fixed closed proper subset of the boundary are dense in L(Ω) in all dimensions n ≥ 2. This is proved using ideas coming from the proof of Kashiwara’s Watermel...

متن کامل

Random Pattern Vertically Oriented, Partial Thickness Buccinator Myomucosal Flap for Intraoral Reconstruction: A Report of Two Cases

Introduction: Reconstruction of the oral cavity witha flap design containing the buccal mucosa and buccinator muscle but excluding the facial artery and vein is the topic of these case reports. Case Reports: This article uses random pattern vertically oriented partial thickness buccinator myomucosal flap for intraoral reconstruction in two cases. The first was for lining the mandibular anterior...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009